Protein secondary structure: entropy, correlations and prediction.

نویسندگان

  • Gavin E Crooks
  • Steven E Brenner
چکیده

MOTIVATION Is protein secondary structure primarily determined by local interactions between residues closely spaced along the amino acid backbone or by non-local tertiary interactions? To answer this question, we measure the entropy densities of primary and secondary structure sequences, and the local inter-sequence mutual information density. RESULTS We find that the important inter-sequence interactions are short ranged, that correlations between neighboring amino acids are essentially uninformative and that only one-fourth of the total information needed to determine the secondary structure is available from local inter-sequence correlations. These observations support the view that the majority of most proteins fold via a cooperative process where secondary and tertiary structure form concurrently. Moreover, existing single-sequence secondary structure prediction algorithms are almost optimal, and we should not expect a dramatic improvement in prediction accuracy. AVAILABILITY Both the data sets and analysis code are freely available from our Web site at http://compbio.berkeley.edu/

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Prediction of Secondary Structure of Citrus Viroids Reported from Southern Iran

Abstract Viroids are smallest, single-stranded, circular, highly structured plant pathogenic RNAs that do not code for any protein. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Members of the Pospiviroidae family adopt a rod-like secondary structure. In this study the most stable secondary structures of citrus viroid variants that reported from Fars province wer...

متن کامل

Application of Maximum Entropy Markov Models on the Protein Secondary Structure Predictions

An application of a new probabilistic modeling framework, Maximum Entropy Markov Model, on the protein secondary structure prediction problem is described [6]. As in previous domains of problem, such as the task of segmenting a body of text, within which MEMM was applied [6], the secondary structure prediction problem requires labeling an observation sequence of alphabets. This paper is an expl...

متن کامل

Physicochemical Position-Dependent Properties in the Protein Secondary Structures

Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...

متن کامل

StatAlign 2.0: combining statistical alignment with RNA secondary structure prediction

MOTIVATION Comparative modeling of RNA is known to be important for making accurate secondary structure predictions. RNA structure prediction tools such as PPfold or RNAalifold use an aligned set of sequences in predictions. Obtaining a multiple alignment from a set of sequences is quite a challenging problem itself, and the quality of the alignment can affect the quality of a prediction. By im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 20 10  شماره 

صفحات  -

تاریخ انتشار 2004